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Although previous studies have shown that a large file of overlapping

register windows can greatly reduce procedure call/return overhead, the
effects of register windows in a multiprogramming environment are poorly

understood. This paper investigates the performance of

multiprogrammed, reduced instruction set computers (RISCs) as a

function of window management strategy. Using an analytic model that

reflects context switch and procedure call overheads, we analyze the

performance of simple, linearly self-recursive programs. For more

complex programs, we present the results of a simulation study. These

studies show that a simple strategy that saves all windows prior to a

context switch, but restores only a single window following a context

switch, performs near optimally.
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1. Introduction

Although a return to simple instruction sets was first advocated by John Cocke and later

successfully realized in the IBM 801 [Radi82], the Stanford MIPS [Henri84], and UC-Berkeley

RISC-II [Part82, Kate84], the source and magnitude of reduced instruction set computer (RISC)

performance increases have been surrounded by controversy. One of the major contributing

factors to the debate has been the presence of a large register file in the RISC-II design. The

portion of RISC-H's performance attributable to its register file has been contested [Hitc85] and

has renewed discussions on register file design. Because this paper considers the management of

RISC-II register files, we digress to briefly review their organization.

RISC-H Register Design

The UC-Berkeley RISC-II design [Patt82] provides each procedure invocation with a

"window" of 32 registers; see Figure 1. The window associated with a called procedure partially

overlaps both the window of the calling procedure (the "high" registers) and the window of the

next procedure called (the "low" registers). Thus, the "high" registers contain the parameters

passed from the caller, and the "low" registers are used to pass parameters to the next callee. On

Figure 1 RISC-II Register Organization
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a procedure call, the "low" registers of the current window become the "high" registers of the

callee's window. The "local" registers are, as the name implies, available for use by the

procedure. Finally, the "global" registers are shared by all windows.

This overlapped register scheme reduces memory traffic in two important ways. First,

rather than placing parameters on the stack prior to a procedure call, they can remain in

registers. Second, by providing a sufficient number of overlapping register windows, the registers

of the invoking procedure need not be saved prior to a procedure call. Of course, it is possible for

the depth of the dynamic chain of procedure calls to exceed the number of register windows. In

this case, some portion of the register file must be saved in memory to provide space for

additional procedure invocations. Tamir [Tami83] has investigated strategies for solving this

problem.

Overview

Although the RISC-II register file organization does reduce memory traffic due to procedure

calls, its value is clouded by several pragmatic issues. First, the performance gains attributable

to reduced procedure call overhead are lessened by the longer machine cycle time that results

from capacitive loading of longer buses. Second, little is known about the behavior of multiple

register windows in a multiprogramming environment, with its associated context switching.

Certainly, the context switch overhead in a multiple register window architecture is greater than

that in a single register set architecture, but it is not known if the performance gains due to

reduced procedure call overhead are offset by larger context switch overheads.

In this paper we evaluate the performance of a RISC-II processor with multiple register

windows in a multiprogramming environment. In section 2, three window management

strategies are discussed. Section 3 presents an analytic model of register management. Finally,

section 4 presents the results of a simulation study that confirms the results obtained from the
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analytic models.

2. Register Management Strategies

As mentioned above, Tamir [Tami83] investigated RISC-II register window management

strategies for execution of stand-alone programs. In RISC-II, register windows form a last-in-

first-out (LIFO) buffer. On a procedure call, the processor allocates an adjacent, overlapping

register window, provided one is available in the register file. Otherwise, a register file overflow

occurs, and one or more windows are pushed to memory, freeing a window for the pending

procedure call. On a procedure return, the processor switches to the previously active window. If

this window is no longer in the register file, an under.flow occurs, and one or more windows are

restored from memory. Two pointers, a current window pointer CWP and a saved window

pointer SWP are used to manage windows in the LIFO buffer and to recognize window overflows

and underflows [Kate84]. Tamir [Tami83] showed that the simplest management strategy,

namely saving the oldest window on overflow and restoring one window on underflow was nearly

optimal. Therefore in the remainder of this paper, we assume this strategy is used.

Context Switching

When a processor is multiprogrammed, the process associated with each program is

suspended and resumed many times before completion. The operating system must preserve the

state of the process at the end of each time slice. If the processor contains a single register set,

this preservation typically entails copying the contents of all registers to memory. If the

processor has many register windows, the context switch overhead includes, in principle, saving

all active register windows. For a machine like RISC-II, this cost can be large. Fortunately,

there are several alternative register management schemes, and some avoid saving all registers.
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Suppose a process occupies n register windows at the time of a context switch. In general,

let

Strategy (k, j) 1 < k < ,, 1 <_j < N

denote saving k windows and restoring j windows, where N is the current depth of procedure

calls. Note that N can he greater than n if windows have been saved on the window stack in

memory. Several strategies of this form are possible. In this paper, we consider three: Strategy

[n, ,I), Strategy [n, 1), and Strategy [0, 1).

Strategy (n, n)

The obvious extension of context switching to a multiple window register file simply saves

all active windows of the current process prior to context switching and restores those same

register windows when the process receives its next time slice. Because the complete state of each

process is restored prior to its time slice, the probability of register window underflow or overflow

is independent of the multiprogramming mix.

Empirical data suggest that most programs exhibit nesting depth locality. Specifically, the

dynamic depth of procedure calls changes only a small amount over long periods of time, even if

the maximal chain of dynamic calls is high. 1 Indeed, this is the primary reason a small set of

register windows on RISC-II can cache most sub-sequences of calls [Part85]. However, because

nesting depth shows only a small variation with time, the register file is likely to contain many

register windows that will not be used by the process until far in the future. By analogy with

virtual memory, the register file contains more windows than those constituting the "working

set" of the process. As a result, Strategy (n, n) will often restore windows that will not be used

before the next context switch.

_This does not mean that there are few procedure calls, merely that the depth of c_lls changes little.
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Strategy (n, 1)

Rather than restoring all windows, we might restore only the window corresponding to the

currently active procedure. This reduces the cost of a context switch and, because each process

resumes with more free windows, also reduces the probability of register file overflow. However,

because only one window is restored, more register file underflows will occur than if the process

ran by itself. Suppose that a process needs all windows saved during the previous context switch.

Underflows will cause these windows to be restored singly, and the total cost will be greater than

if they were restored enmasse. Certainly, the size and number of windows will determine

whether this difference is important. Table 2 shows that the context switching cost for saving n

•RISC-II windows takes the form an ÷ b and that bulk restores are more efficient.

Unlike Strategy In, a), the length of the time slice interacts with Strategy (n, 1) to change

the overflow and underflow probabilities. Strategy (n, 1) has lower context switching cost, but

potentially higher procedure underflow costs. Because the efficacy of the two strategies depends

on the number of windows in the register file, the dynamic chain of procedure calls, and the

number and size of registers windows, it_is difficult to predict a priori their relative performance.

Strategy CO, 1)

The two strategies proposed above save all active register windows. Clearly, context

switching overhead is minimized if no windows are automatically saved: Instead, windows can be

saved as needed. This approach is similar to that used with caches. That is, register windows

remain in the register file until their space is needed. If no intervening process needs the space, a

process may find that some of its register windows are still in the register file at the beginning of

its next time slice.

With this strategy, a window overflow or underflow trap procedure must be able to

determine the owner of each register window. Therefore, a process identifier register and aa



occupancy flag must be associated with each window, and procedure calls must load these

registers appropriately. Finally, the order of a process' windows in memory must be preserved.

If the youngest window belonging to a process is saved before older windows, space in the

memory stack must be reserved for those intervening windows.

When a process resumes execution after a context switch, its register windows may appear

in several possible states.

(1) No windows belonging to the resumed process are in the register file and either

(a) no free windows exist, or

(b) at least one free window exists.

(2) At least one window belonging to the resumed process is in the register file and either

(a) the process' most recently active window is in the register file, or

(b) the process' most recently active window is not in the register file.

The necessary action differs in each case.

In cases (la) and (lb), the window belonging to the active procedure of the process must be

restored from the top of the corresponding memory stack. There are several possibilities for its

placement in the register file. If the process that just relinquished the processor left free windows

(i.e., the process could have executed another procedure call without window overflow) one of

these can be allocated. However, even this poses alternatives. "As Figure 2 shows, it is possible to

restore the process window to the free window following the one pointed t@ by the UWP (current

window pointer) of the previous process, window (a). This permits the maximum number of calls

before a window must be written to memory. Alternatively, a free window just before the one

pointed to by the SWP of the previous process can be allocated, window (b) in Figure 2, giving

preference to returns. As a compromise, a free window between the two pointers would give

equal preference to both calls and returns. These choices will determine how windows in the
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Figure 2 Strategy (0, 1) Window Management

Window 0 Wind6w N-1

Call:

CWP :--_ ( CWP + 1) rood N

if CWP _ SWP then overflow

Return:

CWP :_ ( CWP - 1) mod N

if CWP _- SWP then underflow

register file are populated.

If the process active during the previous time slice did not leave any free windows (i.e.,

another call would have caused an overflow), two possibilities exist. Either the entire register file

is full, or there exists at least one free window in the register file that is not in the contiguous

region between CWP and SWP used by the previous process. In the first case, one or more

windows should be saved in memory. In the second case, a free window must be located. The

"placement" of the resumed process window in the register file is analogous to the cache

replacement strategies [Smit82]. Like those strategies, it must be fast and efficient.

The preceding discussion concerned only cases (la) and (lb), when no windows belonging to

the process remained in the register file at the beginning of its time slice. If the register file is

large, or the multiprogramming level is low, some windows belonging to the process may remain

in the register file. This is analogous to a "warm start" in a cache [Smit82]. However, window

restoration can be completely avoided only if the topmost portion of the window stack belonging

to the process still resides in the register file. Otherwise, either the portion of the window stack

still in the register file must be augmented with those windows in memory; or the portion of the
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window stack in the registerfilemust be saved in memory, and the topmost window of the stack

loaded from memory. These alternativesare necessaryifthe stack structureof the windows isto

be maintained in the registerfile.

Clearly,there are many possibleimplementations of StrategyCO,I). The similaritieswith

caches are obvious, although subtledifferencesexist,primarilybecause the order of windows in

the registerfilereflectsthe call/returnsequencesof processes.Window replacement policiesmust

maintain thisorder. Finally,additionalhardware isneeded for StrategyCO,1) implementation;

fordetailson the hardware requirements,see [Watc87].

Space precludesa complete analysisof Strategy(0,i).Hence, in thispaper,we assume that

StrategyCO,1) must maintain a contiguousgroup of registerwindows in both the registerfileand

associatedmemory stack of each process. Moreover, if any windows belonging to a process

remain in the registerfile,we requirethat the most recently used window alsoremain in the

registerfile.Saving thiswindow in memory forcesthe saving of allother windows belongingto

the process. Thus, the most recentlyused segment ofwindows belongingto a processremains in

the registerfile.Ifa processregainscontrolof the processorand findsthat itscurrentwindow is

missing,the firstgroup of freewindows, beginning at window zero,isused to allocatea window

for the process. This window islocatedat the middle of the freegroup, givingequal preference

to procedure callsand returns. Finally,ifno freewindows exist,the leastrecentlyused window

of the processrelinquishingthe processorisreplaced. This maximizes the time untilthe replaced

window isneeded.

In the next section,we formalizethe interdependency of context switching and window

underflow/overflow as an optimization problem and show how it can be analyzed for simple

programs. Following that,we compare the performance of the contextswitchingstrategiesjust

described using trace driven simulations.



3. Analytic Models of Register Management

As we have just seen, the window management strategy used for context switching can

affect the register file overflow and underflow probabilities. Moreover, increasing (decreasing) the

size of the register file will decrease (increase)

increasing (decreasing) the context switching cost.

overflow and underflow probabilities while

Abstractly, however, the execution time of a

program, measured in machine cycles,2 depends on the number of program instructionsexecuted,

the window management cost for procedure calls,and context switching overhead. Selectinga

window management strategyisthen reduced to the followingoptimizationproblem,

minimize EzecutionTime(P, W, Ts)
¥ P EMPSet

(i)

subject to 1 <_ W <_ Wm_

l _ Ts _ Ts=_

where P is a program in the multiprogramming set MPSet, W is the number of windows in the

register file, and Ts is the time slice. The execution time, in turn, is given by

Ezect_tionTime(P, W, Ts) = Instructions(P) + (2)

Contezt(P, W, Ts)+ Overflow(P, W, Ts)

where Instructions (P) is the execution time of a program without procedure and context switch

overhead, Context(P, W, Ts) is the cost of context switching, and Overflow(P, W, Ts) is the

cost of window management during procedure call and return.

Because this optimization problem depends on the multiprogramming mix and the

interaction of programs with the context switching strategy, there is little prospect of solving the

_Because all RISC-II instructions other than load or store execute in a single cycle [Kate84], modeling program

execution time is straightforward.
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general case. However, for many interesting cases, closed form solutions are possible. Although

these solutions might initially appear to be of marginal value, they provide insight into the

interaction of the parameters. The following section analyzes the performance of self-recursive

programs as a function of time slice; see [Watt87] for an extension to other program classes.

Self-Recursive Programs

Consider a class of programs of self-recursive programs where, at any depth, the

probability of an additional call is p. Then the distribution of procedure depths is binomial, and

the expected depth for any execution of the program is

-- 1 (3)
D=I_ P •

Let T be the execution time of each procedure, and, for simplicity's sake, let each procedure call

occur at the point --.T That is, each procedure invocation executes for __T time units, recursively
2 2

invokes itself, and following the return of the recursive call, executes for an additional __._Ttime
2

units. Then the mean program execution time, exclusive of procedure call and context switching

overhead, is

Instructions(P) = Tff. (4)

Now consider Strategy (n, n) that saves and restores the complete context of each process.

Because the program state is unchanged after each context switch, the procedure call overhead is

independent of the time slice. If the depth of procedure calls D is less than the number of

register windows W, there is no procedure call overhead. Otherwise, each call of depth greater

than D causes both a window overflow and underflow. Hence, the overflow cost is

Overflow(P, W, Ts) = I 0

ff <_W

L
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where S is the cost to save and restore a single register window.

Finally, the time slice Ts can be either smaller

or larger

T
Ts -- k =1,2,3,...

2k

Tk
Ts = _ k--1,2,3,..-

2

T In the first case, each procedure call suffers multiple context switches. Conversely,
than -_-.

there are several procedure calls per time slice in the second case. We consider the two cases

separately.

TCase Ts = _:
2k

As Figure 3a shows, the procedure at depth d suffers context switches with d windows in

the register file, both before and after executing its recursive call. Thus, the context

switching cost for Strategy (n, n} is

Context(P, W, Ts) = 2kS_-_d = kSff[ff + 1] (6)
d--1

if D < W. Recall that k is the number of context switches per procedure invocation, and S

is the cost to save and restore one window.

Similarly, if the mean depth of calls D exceeds the number of windows W, Figure 3b shows

that the D- W procedure invocations that overflow the register file suffer context

switching cost kWS(D - W) before their recursive calls and cost kS(D - W) after their

recursive calls return. Why? On the downward chain of calls, the register file fills, and each

context switch must save the entire register file of W windows. On the upward chain of
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returns, the register file empties, and each context switch saves only a single window. Thus,

the context switching cost is

Context(P, W, :Is)

I

ifD >W.

Tk
Case Ts = _:

2

This case is similar to the previous one except that the context switching interval exceeds

T, the procedure execution time. Thus, successive context switches see the number of

Mlocated register windows grow by increments of k. The number of context switches on the

downward chain of calls is -_- if D < W, and the context switching cost is

Similarly, if D > W, the context switching cost is

Context(P, W, Ts) = S I

D-W
q-1 +

k
(9)

see [Watc87] for a complete derivation of these formulae.

Inspecting these equations shows that the overflow cost (5) is a linearly decreasing function

of the number of windows W in the register file. Similarly, the context switching cost equations

(7) and (9) are linearly increasing functions of W. If aW + b denotes the overflow cost, and

cW + d denotes the context switching cost a, the linear combination (a + b)W + (c + d) can

mm
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have either positive or negative slope. If the slope is positive, the total overhead will increase

with the number of register windows. Conversely, with negative slope, overhead is minimized

with a small number of windows in the register file. The optimal choice depends on the time

slice, cost of register saves and restores, and the depth of procedure calls.

Figure 4 illustrates one combination of values based on the derivation just presented.

Similarly, Figure 5 shows the interaction of context switching cost and procedure overflow cost

on an actual, linearly self-recursive program, factorial, when time sliced on RISC-II with varying

sized register files and the register management costs given in Table 2. The critical dependence

of Strategy (n, n) on so many parameters suggests that it is inappropriate for a

multiprogramming environment.

Analysis of program behavior is not restricted to linearly, self-recursive programs nor to

just Strategy (n, n). The technique has been applied to programs whose call probability is a

function of depth and to programs with richer patterns of call behavior (e.g., trees). Moreover,

other window management strategies, including Strategy (n, 1) and variations of Strategy (0, 1)

are amenable to this technique [Watc87].

4..A. Simulation Study of Register Management

Although the analysis in the previous section does provide insight into the behavior of

certain program classes, it cannot be used to precisely predict the performance of real program

mixes. For this, trace driven simulation is needed.

Selection of benchmarks for trace driven evaluation is always difficult. The desire for

generality must be balanced against the cost of simulating many program traces. Reducing the

number of benchmarks to reduce simulation costs means that the remaining benchmarks must

ZTable2showsjustsuchcostfunctionsforRISC-II.
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reflect "typical" behavior. Moreover, continuity with other studies [Patt82, Hitc85] is necessary

to maintain a standard of reference.

The simulation experiments reported below were based on nine benchmarks. The first six

are those used during the RISC--II evaluation and permit comparison with previously reported

studies [Patt82, Tami83, Hitc85]. Because many of these programs have been criticized as

procedure-call intensive, the set was augmented with three other programs: the Dhrystone

synthetic benchmark [Weic84], the UC--Berkeley RISC-II simulator (Rsim) executing the

Fibonacci program, and the sed editor editing a 500-line UNIX manual.

Table 1 shows the characteristics of these benchmarks when executed stand-alone on

RISC-II with 8 register windows. The call/return instruction frequencies and call/return

memory traffic shown in Table 1 include instructions for saving and restoring both local registers

and environment registers (e.g., program counter and stack pointer). The maximal procedure

Table 1 Benchmark characteristics

Benchmark Call/return

#,qu,nc l l
Call/return

memory tra_c[_]

MND 1 A CS t WRR s ARM _

Ackerman 17.4 49.2 512 2.01 6 3.55:1.5

Fibonacci 21.9 42.9 21 2.00 4 2.3=L-0.8

Hanoi 16.7 48.7 20 2.00 10 3.5=t=2.5

Puzpnt 0.8 6.6 19 1.21 11 4.55:1.2

Puzsub 0.7 3.3 19 1.10 10 2.35:1.0

Qsort 9.7 27.3 10 1.01 15 2.65:2.3

Dhr]rstone 8.6 22.4 5 1.25 12 3.85:1.5

Rsim 0.8 2.6 6 1.06 12 2.25:0.7

Sed 1.4 5.9 7 1.69 11 4.75:1.4

t MND

2A CS

3 WRR

4ARM

- maximal nesting depth

- average length of call sequences

- number of registers in a window referenced in the benchmark

- average number of registers modified in a procedure

w
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nesting depth MND is the minimum number of register windows sufficient to avoid both register

window overflow and underflow. Similarly, ACS is the average number of sequential procedure

calls before a return.

Comparison of the benchmark set characteristics with those for other workloads [Clar82,

Wiec82, Emer84] shows that at least three program classes were included in the set:

• procedure intensive with a greater than normal frequency of procedure calls (Ackerman,

Fibonacci, and Hanos'),

• procedure typical with average procedure call frequency (Dhrystone, Qsort), and

• procedure parsimonious with minimal procedure call frequency (Puzpnt, Puzsub, Rsim, Sed).

With exception of the Ackerman benchmark, the dynamic pattern of procedure nesting depth

confirms the locality of procedure nesting.

Simulated Multiprogramming

Like cache performance studies [Smit82], the performance of RISC-II context switching

strategies depends on the multiprogramming mix and the process scheduling algorithm. The

experiments presented below were based on a simple, round-robin scheduling algorithm with a

fixed time slice. As defined, Strategy (n, n) and Strategy (n, 1) are independent of the mix of

programs, only the length of the time slice is important. For these two strategies, it suffices to

simulate programs singly and calculate the context switching cost at fixed multiples of the time

slice.

The performance of Strategy (0, 1) does depend on the mix of programs. Thus, it was

necessary to capture program instruction traces and simulate context switches among the traces

IKons86]. In all cases, a multiprogramming level of three was used. Among the three program

classes discussed earlier, three mixes were created.
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Mix 1 is a combination of programs from each of the three classes, procedure intensive,

typical, and parsimonious. Fibonacci, Dhrystone and Puzpnt are used in this mix.

Mix 2 is a group of homogeneous programs drawn from the same class. Three combinations

are possible here. First, Fibonacci (two copies) and Hanoi constitute a mix of procedure intensive

programs. Second, Dhrystone (two copies) and Qsort are a "typical" mix. Finally, Puzpnt (two

copies) and Sed constitute a mix of procedure parsimonious programs.

Mix 3 is similar to the first mix, except that Fibonacci was replaced by the Ackerman

program. Ackerman's absence of procedure nesting locality can degrade the performance of the

entire multiprogramming mix [Watc87].

The choice of appropriate time slices for simulations is a difficult problem, because it

depends on the hardware/software environment. For the VAX-11/780 with VMS, the average

time slice has been measured to vary between 1,812 and 9,729 instructions [Emer84, Clar85]. To

cover a range of possibilities, we repeated all experiments for the following time slices, measured

in cycles: 500, 1000, 1500, 5000, 10000, and 20,000.

Performance Measurement

Procedure call and return overhead was calculated using the product of the number of

window overflows and underflows and the execution time of the trap procedure servicing these

events. Similarly, the context switch overhead was assumed to be the product of the number of

context switches and the execution time of context switching algorithm. Table 2 shows these

costs, obtained from an analysis of the RISC-LI assembly code for each operation.

As stated before, the execution times of the benchmarks were used as a measure of the RISC

performance. The procedure and context switch overheads, Overflow(P, W, Ts) and

Context(P, W, Ts) in equation (2), were monitored separately to study behavior in two

q
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Table 2 Procedure and context switch overhead (cycles)

Strategy Window Window Gontezt Context

Overflow Underflow Save Restore

54 57 37 + n×43 x 27 + n×451

54 57 37 + n×431 67

54 41

(n_n)

(n,1)

(o,1) 57 or 94 + nX432 100,137 or 1872

in - number of active windows.

Zimplementation strategy dependent

execution environments: stand-alone mode and in multiprogramming mode. The ratios of these

overheads to the program time (i.e., Context/Instructions, Overflow/Instructions, and (Overflow

+ Context)/Instructions) were used as performance metrics. Note that Instructions is the

optimal performance, the execution time without procedure and context switch overhead (i.e., for

the infinite number of windows and no context switching).

4.1. Stand-alone Program Execution

Figures 6 and 7 show the procedure overhead for selected members of the benchmark set as

a function of the number of windows in stand-alone mode. For most benchmarks, the procedure

overhead becomes negligible long before the number of windows approaches the benchmark's

maximal nesting depth. For those benchmarks with parsimonious or typical procedure call

frequencies, four windows suffice to reduce the procedure overhead to less than 2 percent of the

program execution time. For highly recursive benchmarks such as Fibonacci and Hanoi, the

procedure overhead is less than 6 percent when the the number of windows exceeds 10. Only the

Ackerman benchmark shows anomalous behavior. With a maximum procedure nesting depth of

512 and little locality in the pattern of procedure calls, the Ackerman benchmark benefits little

from multiple register windows. This produces the very high procedure call overhead.
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4.2. Execution in a Multlprogramming System

Space precludes a complete presentation of the simulation results; see [Watc87] for details.

Hence, we concentrate on two of the three program classes, procedure typical and procedure

inten_ire using the Dhrystone and Fibonacci benchmarks as representatives; other benchmarks

yield similar results. In all eases, we show the overhead for procedure calls and context switching

as a function of the program execution time in stand-alone mode with an infinite number of

register windows.

Strategy [n, n)

Figures 8 and 9 show that, for each context switching interval, there is an optimal number

of windows. As the number of windows in the register file increases, the probability of window

overflow decreases. Simultaneously, the cost of each context switch increases. These two trends,

one increasing cost, the other decreasing cost, yield an optimal number of windows for a given

context switching interval. This is in apparent contrast to the analytic results obtain earlier.

Recall, however, that the Fibonacci benchmark is not linearly recursive. Instead, its pattern of

calls (i.e., Fibonacci (n) -_ Fibonacci (n-l) + Fibonacci (n-2)) form a tree of procedure call

depths. This is illustrated in Figure 10. This behavior yields a quadratic cost function for

overhead; whence the minima in Figure 9.

Table 3 shows that the optimal number of windows for each benchmark is not a constant; it

depends on the time slice. For small time slices, it is more important to minimize the number of

register windows because these windows must be saved frequently. As the time slice increases,

procedure overflow and underflow overheads dominate, favoring use of additional windows.

Two final points about Figures 8 and 9 should be noted. First, the optimal number of

register windows depends on the program type. For programs with modest procedure call depth,
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Table 3 Optimal number of windows for Strategy (n, n}

Time81ice(cycles)
Benchmark

0.5K 1K 1.5K 5K 1OK 20K

Fibonacci 9 9 II 13 13 15

Hanoi 7 7 9 9 11 11

Puzpnt 2 2 3 3 4 5

Puzsub 2 2 2 2 3 4

Qsort 2 2 2 4 4 5

Dhrystone 4 4 4 4 4 4

Rsim 2 3 3 3 3 3

Sed 3 3 3 5 5 5

a small number of register windows is best. Using too many windows retains portions of the

dynamic call chain that are not in the "working set" of windows, resulting in excessive context

switching overhead. Likewise, using too few windows causes "window thrashing." The sensitivity

of programs to the number of windows is striking, as the Dhrystone benchmark illustrates. In

contrast, highly recursive programs like Fibonacci have a large window "working set" and need

more windows. Second, the absence of a single register set size that minimizes execution time for

all programs suggests that Strategy (n, n) is a poor candidate for register window management in

a multiprogramming environment.

Strateg!/ (n, i)

As Figures 11 and 12 show, restoring a single window following a context switch greatly

reduces the overhead, compared to Strategy (n, n). For all classes of benchmarks, the overhead

approaches an asymptote as the number of register windows grows. Table 4 shows the number

of register windows that yields execution time within 1 percent of the minimal execution time

achievable with a infinite number of windows. A comparison with Table 3 shows that the values
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Table 4. Optimal number of registerwindows under Strategy(n,1)

Time alice values (c_cles)
Benchmark

0.5K 1K 1.51( 5K 1OK _OK

Fibonacci 11 13 11 13 13 13

Hanoi 11 13 11 9 11 11

Puzpnt 3 3 3 3 3 3

Puzsub 2 2 2 2 2 2

Qsort 2 3 3 3 3 3

Dhrystone 4 4 4 4 4 4

Rsim 2 3 3 3 3 3

Sed 4 4 4 4 4 5

in Table 4 are slightlylarger. Recallthat StrategyIn,1) restoresonly a singleregisteraftera

contextswitch. Thus, the mean number ofwindows a processcan maintain in the registerfileis,

for a fixedsizeregisterfile,smaller for Strategy(n, 1) than for Strategy(n, n). This favorsa

slightlylargerregisterfileforStrategy(n,1).

Because the performance of Strategy[% 1)ismonotonic in the sizeof the registerfile,itisa

promising candidate for a multiprogramming environment. A registerfilelarge enough to

accommodate highlyrecursiveprograms isalsooptimal forprocedure parsimonious programs.

Strategy (0, 1)

Figure 13 shows the procedure and context switch overhead under Strategy(O,1) for both

mix 1, a mixture of program types (Fibonacci, Dhrystone, and Puzpnt), and mix 2, a

homogeneous program group (Dhrystone, Dhrystone, and Qsort). Comparing Figure 13 to

Figure 11 shows that, within the range of 2 to 16 windows, Strategy _0, I) is generally inferior to

Strategy (n, i). There are two principal reasons for this performance gap.

First, recall that Strategy(O,1) can potentially find the most recently used window of the

process still in the register file, a "window hit." However, detailed examination of the simulations
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showed that, in mix 1, the hit ratio for one program was less than 10 percent and did not exceed

60 percent for any program in the mix. Similarly, the hit ratio ranged from 10 to 80 percent for

the programs in mix 2. When the most recently used window is not in the register file, the

window underflow trap procedure must search for free windows in the register file. In most cases

the register file was full, leading to large overheads.

Second, because the register file utilization is so high, processes compete for free windows.

In other words, the overall performance is degraded by interference among processes. This

competition for windows can result in anomalies for certain processes in jobs mixes (i.e., a larger

register file can actually increase the overhead); see Figure 13a. The effects of competition are

most pronounced for small time slices. Each process spends a large portion of its time slice

fetching register windows from memory.

To overcome the window management overhead and the interference effect, Strategy (0, 1)

requires a larger register file. This will increase the hit ratio and increase the window allocation

for each process. Figure 14 shows the performance of Strategy(O,1) for 16 to 80 windows on the

Dhrystone benchmark. For a a large enough register file, the hit ratio approaches 100 percent.

Table 5 shows the overhead ratios for Strategy (0, 1) and Strategy (n, 1) with an infinite number

of windows. For programs with typical procedure call patterns (e.g., Dhrystone), Strategy _n, 1)

Slice

1.5K

5K

10K

20K

Table 5 Ratio of overheads Strategy {n, 1):Strategy (0, I)

Dhrystone

Mix i Mix 2

FibonacciPuzpnt Dhrystone Puzpnt Fibonacci

6.67 6.92 20.21 7.04 6.92 20.21

4.41 7.38 17.96 6.17 7.76 17.96

4.15 7.94 14.97 5.96 8.35 14.97

3.17 8.57 13.37 4.86 9.04 13.37
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has roughly 5 times the overhead of Strategy (0, i). For heavily recursive programs, the

asymptotic overhead ratio approaches 20. This is tempered by the knowledge that the absolute

overhead of both schemes is relativelysmall for a sufficientnumber of windows. In thislight,

Table 6 shows the number of windows necessaryfor Strategy[0,1) to yieldlower overhead than

Strategy(n,I). As can be seen,thisdepends heavilyon the program mix.

The effectsof the program mix on the performance of Strategy(0,1) and the variationin

sizeof the registerfilenecessaryto optimize performance suggest that Strategy(n, 1} islikely

preferable.However, Strategy(0,1] should be investigatedfurther.

5. Conclusions

We have presented three window management strategiesfor a multiprogrammed RISC-II

processor.The simpleststrategysaves allactivewindows belongingto a processat the end of its

time slice.Upon resumption, allwindows are restored.Although thistechnique,Strategyin,n),

requiresno modificationto the existingRISC-II hardware, we showed via analyticmodels that

the optimal sizeof the registerfiledepends on the context switch intervaland the pattern of

procedure calls.This was confirmed via tracedrivensimulation. This suggeststhatthisstrategy

isinappropriatefora multiprogrammed environment.

Slice

1.5K

5K

10K

20K

Table 6

Number of windows where

Strategy (0, 1) is preferable to Strategy (n, I)

Dhrystone

Mix I Mix 2

Puzpnt Fibonacci Dhrystone Puzpnt Fibonacci

20 20 12 10 10 28

24 24 12 10 12 32

28 24 14 12 14 32

28 28 14 12 16 40
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The secondapproach, Strategy {n, 1), saves all active windows upon a context switch, but

restores only one. Simulations showed that it is uniformly superior to the first strategy.

Moreover_ the context switching overhead decreased asymptotically with larger register files. As

before, no modification to existing hardware is necessary. This suggests that a single, large

register file can provide good performance in a multiprogrammed environment.

The final technique, Strategy (0, 1), treats the register file as a cache, saving windows only

when their space is needed. The performance of this strategy is sensitive to the mix of programs,

unlike either of the other strategies. Although a larger register file is necessary to achieve good

performance, this strategy is asymptotically superior to either of the two strategies that save the

entire context each time slice. As we noted at the outset, there are many variations of Strategy

CO, 1)1 based on the window replacement algorithms used. Further experimentation is needed to

determine if the hardware costs of this approach are offset by increased performance.
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